Adenosine inhibits ENaC via cytochrome P-450 epoxygenase-dependent metabolites of arachidonic acid.

نویسندگان

  • Yuan Wei
  • Peng Sun
  • Zhijian Wang
  • Baofeng Yang
  • Mairead A Carroll
  • Wen-Hui Wang
چکیده

We used the patch-clamp technique to examine the effect of adenosine on epithelial sodium channel (ENaC) activity in rat cortical collecting duct (CCD). Application of adenosine inhibits ENaC activity, and the effect of adenosine was mimicked by cyclohexyladenosine (CHA), an A(1) adenosine-receptor agonist that reduced channel activity from 1.32 to 0.64. The inhibitory effect of CHA on ENaC was mimicked by cyclopentyladenosine (CPA), which reduced channel activity from 1.1 to 0.55. In contrast, application of CGS-21680, an A(2a) adenosine-receptor agonist, had no effect on ENaC and increased channel activity from 0.96 to 1.22. This suggests that the inhibitory effect of adenosine analogs resulted from stimulation of the A(1) adenosine receptor. Inhibition of PLC with U-73122 failed to abolish the effect of CHA on ENaC. In contrast, the inhibitory effect of CHA on ENaC was absent in the presence of the PLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)). This suggests a role of arachidonic acid (AA) in mediating the effect of adenosine on ENaC. To determine the metabolic pathway of AA responsible for the effect of adenosine, we examined the effect of CHA in the presence of indomethacin or N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH). Inhibition of cytochrome P-450 (CYP) epoxygenase with MS-PPOH blocked the effect of CHA on ENaC. In contrast, CHA reduced ENaC activity in the presence of indomethacin. This suggests that CYP epoxygenase-dependent metabolites of AA mediate the effect of adenosine. Because 11,12-epoxyeicosatrienoic acid (11,12-EET) inhibits ENaC activity in the CCD (Wei Y, Lin DH, Kemp R, Yaddanapudi GSS, Nasjletti A, Falck JR, and Wang WH. J Gen Physiol 124: 719-727, 2004), we examined the role of 11,12-EET in mediating the effect of adenosine on ENaC. Addition of 11,12-EET inhibited ENaC channels in the CCD in which adenosine-induced inhibition was blocked by AACOCF3. We conclude that adenosine inhibits ENaC activity by stimulation of the A(1) adenosine receptor in the CCD and that the effect of adenosine is mediated by 11,12-EET.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arachidonic Acid Inhibits Epithelial Na Channel Via Cytochrome P450 (CYP) Epoxygenase-dependent Metabolic Pathways

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 microM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose-response curve of the AA effect on ENaC shows that 2 microM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because n...

متن کامل

Inhibitors of the cytochrome P-450 enzymes block the secretagogue-induced release of corticotropin in mouse pituitary tumor cells.

A mouse pituitary tumor cell line (AtT-20) releases corticotropin (ACTH) in response to a number of secretagogues, including corticotropin-releasing factor (CRF), beta-adrenergic agents, N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2 cAMP), and potassium. The stimulation of ACTH secretion induced by the secretagogues can be blocked by inhibitors of the enzymes that generate (phosphol...

متن کامل

Arachidonic acid inhibits basolateral K channels in the cortical collecting duct via cytochrome P-450 epoxygenase-dependent metabolic pathways.

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on basolateral 18-pS K channels in the principal cell of the cortical collecting duct (CCD) of the rat kidney. Application of AA inhibited the 18-pS K channels in a dose-dependent manner and 10 microM AA caused a maximal inhibition. The effect of AA on the 18-pS K channel was specific because application of 11,14,17-...

متن کامل

The kidney cytochrome P-450 2C23 arachidonic acid epoxygenase is upregulated during dietary salt loading.

Excess dietary salt intake induces the activity of the kidney arachidonate epoxygenase and markedly increases the urinary excretion of its metabolites. The epoxyeicosatrienoic acids, products of the kidney P-450 arachidonate epoxygenase, inhibit distal nephron Na(+) reabsorption. Nucleic acid hybridization studies demonstrated the expression of P-450s 2C23, 2C24, and 2C11 as the predominant kid...

متن کامل

Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC).

Sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006